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Recently Lindzen (1974) has proposed a model of a shear-layer instability which 
allows unstable modes to co-exist with radiating internal gravity waves. The 
model is an inhite,  continuously stratified, Boussinesq fluid, with a simple jump 
discontinuity in the velocity profile. Linear stability theory shows that the model 
is stable for wavenumbers k such that k2 < N2/2U2,  where N is the Brunt- 
VaisalB frequency and 2U is the change in velocity across the discontinuity. 
For N2/2U2 < k2 < N2/U2  an unstable mode may co-exist with an internal 
gravity wave. This paper examines the weakly nonlinear aspects of this model 
for wavenumbers k close to the critical wavenumber N/24 U.  An equation govern- 
ing the evolution of the amplitude of the interfacial displacement is derived. 
It is shown that the interface may support a stable finite amplitude internal 
gravity wave. 

1. Introduction 
Clear-air turbulence is generally attributed to the Kelvin-Helmholtz instability 

of shear layers (q.v. Atlas et al. 1970; or review by Dutton & Panofsky 1970). 
Recently, however, Lindzen (1974) has drawn attention to the fact that some 
observations show the existence of internal gravity waves in the neighbourhood 
of shear layers (q.v. review by Ottersten, Hardy & Little 1973). Consequently 
Lindzen was led to consider a model of a shear layer which consisted of a simple 
jump discontinuity in velocity embedded in an infinite, continuously stratified, 
Boussinesq fluid. Such a model allows internal gravity waves to propagate 
away from the shear layer, and Lindzen has suggested that the energy flux 
associated with these waves may inhibit instability in the shear layer. Indeed, 
using linearized stability theory, Lindzen showed that, for a basic velocity 
discontinuity 2 U and Brunt-Vaisala frequency N ,  perturbations with horizontal 
wavenumbers k are unstable when k2 > N2/2Uz.  For k2 < N2/U2,  however, there 
also exists a neutral mode, or internal gravity wave. Thus Lindzen’s model 
contains the interesting feature that an unstable mode may co-exist with an 
internal gravity wave. The implications of this for the energetics of the shear 
layer require a comprehensive discussion of nonlinear effects; conclusions based 
solely on the wave energy flux associated with the outwardly propagating waves 
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FIGURE 1. The basic velocity prof% and co-ordinate system. 

wis-&-wis the growth in energy of the unstable modes are likely to be erroneous 
(McIntyre & Weissman 1976). In the present paper we shall be concerned with 
just one aspect of the nonlinear effects. We propose to examine the weakly non- 
linear regime associated with a single wavenumber k which is close to the critical 
wavenumber If123 U. Although modes with larger wavenumbers have faster 
growth rates, our hope is that the calculations presented here will throw some 
light on the nonlinear aspects of Lindzen’s model. This hope is bolstered a little 
by the observations recorded in $ 4  (the same observations as were analysed by 
Lindzen), which show that the observed wavenumbers are close to the critical 
wavenumber. However, other observations (e.g. Metcalf & Atlas 1973) have 
indicated much larger wavenumbers, and it is well known that the Richardson 
number associated with the width of the shear layer is a crucial parameter for 
discussing clear-air turbulence. Lindzen’s model contains no such Richardson 
number dependence. Nevertheless it is the simplest model possessing the feature 
of internal gravity waves co-existing with unstable modes, and for this reason, we 
propose to pursue its nonlinear aspects. 

We shall assume that the basic state, in an infinite inviscid Boussinesq fluid, 
has a constant Brunt-Vaisala frequency N and a velocity, in the x direction, of 
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f U in z < 0 (figure 1). It will be assumed that there is no variation in the 
y direction, as it may be shown that the stability criterion is independent of the 
wavenumber in the y direction. We shall use non-dimensional variables, based 
on a velocity scale U, a time scale N-1 and a length scale UN-1; the reduced 
pressure (i.e. the deviation of the pressure from its hydrostatic value) is scaled by 
p1 U2, where p1 is a reference density. Then the equations of motion are (e.g. 
Turner 1973, chap. 1) 

uz+wz = 0, (1.1) 

(1.2) 

(1.3) 

(1.4) 

* U ,  + U t  +pz = FH = - uuX - W U ~ ,  

- +w,+wt+p,+r = Fv = -uwx-wwz, 

?rx+rt-w = G = -ur x -wr 2' 

Here u and w are the x and z components of the perturbed velocity, p is the re- 
duced pressure and r is the buoyancy (i.e. g(p  -po)/po scaled by U N ,  where po(z) 
is the density in the basic state). The equations have been written in a form in 
which the linear terms are on the left-hand side and the nonlinear terms, repre- 
sented by E)', Fv and G, are on the right-hand side. The symbols & indicate the 
regions z 5, where z = 5 is the equation of the perturbed interface. If the 
variables on the left-hand side are eliminated in favour of w, it follows that 

L*w = M*, 
where L* are the linear operators 

and M* are the nonlinear expressions 

The boundary conditions a t  the interface z = 5 are continuity of the pressure, 
and the kinematic condition 

&:,+Q+uQ-w = 0 at z = 6. (1.8) 
w e  anticipate that 5 will be small, and expand these conditions in a Taylor 
series about z = 0. Thus (1.8) becomes 

Q + Q - w = H *  a t  z = O - k ,  

where H* are the nonlinear expressions 

a* = (5wz + ~52Ww, ,  + *63WZZZ + . . . 
- Q u - ~ ~ z u , - ~ ~ ~ ~ z u z , - . . . )  at z = 05 

using ( l . l ) ,  we may write H* in the alternative form 

H* ={-( U ~ ) , - ( ~ ~ ~ U , ) ~ - ( + ~ ~ U , ~ ) , -  ...) a t  z = O + .  

The pressure condition becomes 
bI+ = Q ,  

(1.9) 

(1.10) 

(1.11) 

(1.12) 
5-2 
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where Q is the nonlinear expression 

Q = - CCP,I~- - m ~ ~ ~ 1 r  - - . . . . (1.13) 

Here [p]? etc. denote the discontinuities in p etc. across z = 0. 

The linearized equations, discussed by Lindzen (1974), are now obtained by 
formally putting FH, Fr,, G ,  H* and Q equal to zero. Seeking solutions propor- 
tional to exp { i k ( x  - c t ) } ,  we find that 

w = aA* exp {ik(z - c t )  f i n k }  in z 5 0, (1.14) 

6 = aA exp {ik(x - ct)} .  (1.15) 

Here A* and A are constant amplitudes, while a is a small parameter introduced 
as an appropriate measure of the magnitude of 5. We shall assume throughout 
that k is positive. The constants n* are given by 

(n*)2 = ( c  F 1)-2- k2. (1.16) 

The appropriate branch of n* is selected by applying a radiation condition. In 
linearized problems it is customary to obtain a radiation condition by requiring 
the wave energy flux, or the group velocity, to be outward. However, in the non- 
linear context of subsequent sections, conditions at i n h i t y  cannot be obtained 
by considerations of wave energy flux alone. Instead, we shall require that our 
solutions decay exponentially when ci (the imaginary part of c )  takes small 
positive values. This condition is motivated by considering an appropriate 
initial-value problem. Lighthill (1960) has shown that in linearized problems this 
condition is equivalent to conditions based on group-velocity criteria. Let 

nf = nf +in$, c = cr + ic,. (1.17) 

Then, our radiation condition for the solution (1.14) is either 

nf > 0 (1.18) 

or nf = 0, nlf(c,. T 1) < 0. (1.19) 

A* = - - ik(cT l ) A  (1.20) 

and that n+(c- 1)2+n-(c+ 1)2 = 0. (1.21) 

Next, the linearized boundary conditions show that 

This is the dispersion relation which determines c as a function of k. The solutions 
are 

and c2 = (2k2)-1- 1 for k2 > a. (1.23) 

The solution (1.22) represents an internal gravity wave (stationary in the present 
frame of reference); the restriction on k is obtained from the radiation condition 
(1.19). (The vertical group velocity of this wave has magnitude (k2- k4)4  and is 
directed away from the interface in both media.) As it consists only of waves 
propagating away from the interface, it may be regarded as a special case of 
over-reflexion (Acheson 1976). The solution (1.23) is also an internal gravity 

c = O  for O < k 2 < 1  (1.22) 
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wave for < k2 < 8; the lower bound on k is obtained from the radiation con- 
dition (1.19), and implies that the phase speed c is bounded by unity. This mode 
was not discussed by Lindzen, who put c, equal to zero. For k2 > 4, the solution 
(1.23) represents an unstable mode for which c, is zero and ci increases from zero 
to unity as k2 increases from 4 to infinity. The critical wavenumber kc which 
separates unstable modes from stable modes is given by 

k: = 4. (1.24) 

The interesting feature of these solutions is the co-existence of internal gravity 
waves with unstable modes when k lies between kc and unity. 

In the nonlinear analysis of subsequent sections, we shall consider wave- 
numbers k close to the critical wavenumber k,. It is apparent from (1.23) that 
c: is approximately 2(k - kc)/kc. We anticipate that ci is O(a)  and hence define 

k = kc( 1 +a?), (1.25) 

where y is O( 1) with respect to the amplitude parameter a. We shall attempt to 
describe the nonlinear effects by allowing the amplitudes to evolve slowly in time, 
on a time scale O(a-1). Thus we shall introduce the slow time variable 

T = at, (1.26) 

and allow the amplitude A to depend on T.  This is a familiar feature of weakly 
nonlinear stability calculations, and this technique has been applied to classical 
Kelvin-Helmholtz problems by Drazin (1970). Away from the interface, this 
slow time modulation will cause a slow modulation in space, and so we shall 
introduce 

Z = az, (1.27) 

and allow A* to depend on T and Z. We note that c is zero when k = kc, and that 

nf = kc when k = k,. (1.28) 

In $9 2 and 3 we shall describe the weakly nonlinear analysis, and in 0 4 we shall 
discuss the results of this analysis as it affects the evolution of the amplitude A .  
For reasons which we shall discuss in $3, the analysis will be carried through 
to o(a4). 

2. Weakly nonlinear theory 

solutions of the form 
Motivated by the discussion at the end of the last section we are led to consider 

m= m 
(c = <m(T)exp{irnkx}+c.c., 

m = - m  

m= m 

m=-m 
w = C w,(T,z,Z) exp{imkx}+c.c. (2.2) 

Here (c, = c-m etc. These expressions, and the corresponding expressions for 
U, r and p ,  are then substituted into the equations (1.5) and the boundary 
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conditions (1.9) and (1.12). The result is, on equating like Fourier com- 
ponents, 

wm = M&, z Z 0 ,  (2.3) 

a- aCm +imkCm-wm = H& z = O + ,  
aT - 

CP,]? = Q,, z = 0. (2.5) 

Here the operators L+ are defined by (1.6), and M$, H$ and Q, are the mth 
Fourier components of the nonlinear terms H*, H* and Q defined in (1.7), (1.10) 
and (1.13) respectively. In  these equations k is expanded about kc, according to 
(1.25). Throughout the subsequent analysis the superscript & indicates an 
expression d e h e d  in z 5 0. 

For the Fourier component m = 1, it may be shown that M,' are O(a3), a result 
which we shall verify a posteriori. Hence 

The appropriate solution for w1 is thus 

where 
w1 = aA+(T, 2) exp {ikcz} + O(a3), 

aA*/aZ = T 2aA*/aT + O(a).  

The solution (2.7) should be compared with the unmodulated linearized solution 
(1.14), for which n* are just + kc by (1.28). The result (2.8) follows most readily 
by substituting (2.7) into (2.6), and examining the term O(a2). Its  significance is 
that it demonstrates that, to leading order in a, modulations in the amplitude A+ 
propagate vertically upwards (downwards) into Z > 0 ( < 0 )  at the group velocity 
corresponding to the wavenumber k = kc. Indeed it is well known that the vertical 
group velocity for an internal gravity wave of vertical wavenumber n, horizontal 
wavenumber k and intrinsic frequency w T k is (Phillips 1966, p. 175) 

(2.9) - n(w T k ) / ( n 2  + k2) .  

Here (1) equals kc and is zero, while k is kc and n is also kc; hence the group velocity 
from (2.9) is + Q. This discussion demonstrates that our solution (2.7) may be 
regarded as an internal gravity wave propagating vertically upwards (down- 
wards) into Z > 0 (<  0) .  This is a consequence of our expansion being centred 
around the critical wavenumber kc, and it is certainly not true that unstable 
modes for which k differs greatly from kc can be regarded as radiating waves. 
For a detailed discussion of this point see McIntyre & Weissman (1976). 

Turning next to the boundary condition (2.4) for m = 1, it may be shown that 
Hlf are O(a3), a result which we shall verify a posteriori. Substituting (2.7) into 
(2.4) and relabelling 

it follows that 
C l m  = aA(T), (2.10) 

A*(T, 0)  = ikA +a: aA/aT + O(a2).  (2.11) 
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Once the nonlinear terms M i ,  H: and Q1 have been evaluated, the boundary 
condition (2.5) leads to an amplitude equation for A(T) .  However, the calcula- 
tions leading to this equation will be deferred to $3, and the remainder of this 
section will be concerned with the Fourier components m = 0 and 2, which we 
anticipate to be at  least O(a2). The remaining Fourier components (m 2 3) are 
at  least O(a3), and it may be shown that they do not contribute in the weakly 
nonlinear situation being considered here. 

We turn now to  the Fourier component na = 2, and putting m = 2 in (2.3), we 
have 

w,= MZ, 2 5 0 .  (2.12) 

For subsequent purposes it will be sufficient to know w2 to within an error 
O(a4), and hence we need only consider the contribution of w,, u,, rl and p1  to 
FH2, F,, and G, [and hence to M$ by (1.7)]. Now (1 .1)  implies that 

iku, + aw,/az + a aw,/az = 0. (2.13) 

Also, it may be shown, and will be verified a posteriori, that FH1, Fvl and G, are 
all O(a3). Hence, in particular, (1.4) implies that 

W, = ikr, + a ar,/aT = O(a3). (2.14) 

Using the results (2.13) and (2.14) it may easily be shown that FH2, Fv2 and G, 
are each O(a4), and hence M$ are O(a4). Thus, to leading order, the equation for 
w2 is 

L ~ O ,  2ikc, a p z )  W ,  = a2w2/az2 - W ,  = O(a) w2 + o(a4). (2.15) 

Here, the first term on the right-hand side is a term representing various opera- 
tions (such as aa/aT) applied to w, which are at least O(a) compared with w2, 
and the second term is M$. Thus the appropriate solution for w,, which is 
bounded as z-+ & co, is 

w2 = a3A.$(T, Z)  exp ( T z )  +O(a4). (2.16) 

Here we have inserted a factor a3 in anticipation of the fact that the boundary 
conditions will show that w, is O(a3) (rather than O(a2) as might have been 
expected). Also, it follows from ( l . l ) ,  (1.2) and (1.4) that 

(2.17) I u2 = T a3ikcA: exp ( T z )  + O(a4), 

p ,  = a3ikcA$exp( Tz)+O(a4) ,  

r2 = T a3ikcAzf exp ( T z )  + O(a4). 

We see therefore that the second Fourier components decay exponentially away 
from the interface, and unlike the first Fourier component (2.7), are not capable 
of transporting energy away from the interface. 

Next we must consider the boundary conditions for m = 2. First we relabel 

c2 = a2A,(T). (2.18) 
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Then, from (2.4) and (2.5), using (2.16) and (2.17), we have 

a2{a aA,/aT k 2ikA2- aA$(T, 0)) + O(a4) = H$, (2.19) 

a3ikC{A$(T, 0 )  - A,(T, 0)) = Q2. (2.20) 

H$ = -2iku1<,+O(a4). (2.21) 

(2.22) 

To calculate H$,  we first observe that (1 .11)  implies that 

Then, from (2.7), (2.8), (2.11) and (2.14), it  follows that 

HZ = 7 a2A2 - a32ikcA aA/BT + O(a4). 

Similarly it may be shown that 

Q2 = a34ikcA BA/BT + O(a4). (2.23) 

Substituting (2.22) into (2.19), and (2.23) into (2.20), it follows that 

A,  = ikCA2-a2ikcA8A/BT+O(a2), (2.24) 

A$(T,O) = ( 4 i k c f 2 ) A B A / B T + O ( a ) .  (2.25) 

We have now confirmed that A$ are O( l), and so w2, u2, p 2  and r2 are all O(a3), 
as we anticipated earlier, although the interfacial displacement c2 is O(a2). 
Equation (2.25) determines A$(T,O) in terms of A(T),  but the behaviour of 
A$(T, 2) with respect to the co-ordinate 2 is undetermined at this stage. The 
appropriate equation t o  determine this behaviour may be obtained by examining 
the O(a4) terms in (2.16). However, we shall not display this calculation here a s  
it transpires that a knowledge of A$(T, 0 )  alone is sufficient when considering 
the amplitude equation for A(T).  

The Fourier component m = 0, or the mean flow, may be obtained by putting 
m = 0 in (2.3)-(2.5). However it is more instructive to observe that the equations 
governing the mean flow may also be obtained by averaging, over one wave- 
length, with respect to  2. Thus the Fourier component f o ( T , x , Z )  of some field 
variable f ( T ,  x, z, 2) may be defhed by 

(2.26) 

Applying this averaging operation to (1.1), it follows immediately that 

wo = 0. (2.27) 

Similarly the result of averaging (1.2)-( 1.4) is 

(2.28) 

(2.29) 

(2.30) 
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Turning next to the boundary conditions, we see immediately from (1 .11)  that 
H$ are identically zero, and hence, on averaging (1.9), it follows that 

c, = 0. 

bolf = Qo. 

Finally, averaging (1.12) shows that 
(2.31) 

(2.32) 

To calculate the nonlinear terms FHO, Fvo, Go and Q, to within the required error, 
we need only consider the contribution from cl, wl, ul, rl and pl .  We fmd that 

(2.33) 

Q, = 4013ik A - - A  - +O(a4). ( 2 3) (2.36) 

It is now apparent that (2.28) determines u,, while (2.30) determines r,; then 
(2.29) plus the boundary condition (2.32) determines p,. Also, since (2.33)-(2.35) 
show that FHO, Fvo and Go are independent of z, it follows that u,, p o  and r, are 
independent of z, at least to within the required error. We fmd that 

(2.37) 

(2.38) 

It may easily be verified, using (2.11), that p,, as given by (2.38), will satisfy the 
boundary condition (2.32). To find u,, we use (2.8), and hence 

u0 = F ~ ~ ~ ~ A * / ~ + O ( C X ~ ) .  (2.39) 

The ‘constant’ of integration (here an arbitrary function of 2) has been set 
equal to zero, as we are assuming that the disturbance originates at the interface 
at time T = 0. In the next section we shall need to calculate the O(a3) term in 
(2.39) explicitly, but we cannot do this until the O(a) term in (2.8) is known 
explicitly. This calculation will be displayed in the next section. 

Our result for the mean flow shows that p ,  and r, are O(a3), while the mean 
velocity u, is O(a2). Further, it is apparent from (2.28) that the acceleration of 
the mean velocity is simply due to the gradient of the Reynolds-stress component 
(uw), where the input for (uw) is just the internal gravity wave (2.7), which is 
Propagating vertically upwards (downwards) into Z > 0 ( <  0) a t  the group 
’pelocity k 4 [see (2.8)]. For a general analysis of the equations governing the 
mean flow associated with a propagating internal gravity wave, see Grimshaw 
(1974). In the present context, it may be shown that the solution (2.39) is just 
thatneeded to ensure that the totaZ energy flux in the vertical direction is zero, 
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although there is a non-zero wave energy flux in the vertical direction associated 
with the internal gravity wave (2.7) (see Acheson (1976) for a detailed discussion 
of this aspect in a more general context than that considered here). The implica- 
tions of (2.39) for the energetics of this system have been discussed recently by 
McIntyre & Weissman (1976). 

3. Derivation of the amplitude equation 
In this section we shall derive the amplitude equation for A ( T )  which is 

obtained by considering the Fourier component m = 1. First, let us consider 
the equation (2.3) for w,, and calculate the nonlinear terms Mlf to within an error 
O(a5). We let 

where a superscript (0)  indicates the contribution to FHl, etc., from the inter- 
action of the Fourier components m = 0 and m = 1, and a superscript (2) indicates 
the contribution from the interaction of the Fourier components m = 2 and 
m = 1; the higher Fourier components will contribute only to the error term. 
Since w2, u, and r, are O(a3), Fgl etc. are O(a4), and are given by 

FHl = s)l + F’, + O(a5), etc., (3.1) 

Fg,  = - ikU,?i, - w2DGl - W1 Du2, 
E”+1= iku2W1 - 2ikw2;li, - w2 DW, - W, Dw2, 
GP) = ikui?, - 2ikii,r2 - w2DF, - W, Dr,. 

Here D denotes the total derivative with respect to z :  

D = alax +aapz. (3.3) 

~p = o(a5). (3.4) 

Then, using (2.13), (2.14), (2.16) and (2.17), we can show that 

Thus, remarkably, the second Fourier components do not contribute to M:, 
a t  least not to O(a4). 

Next, since uo is O(a2)  but r, is O(a3) and wo is zero, we see that 

(3.5) I F& = - iku,u, - awl auolaz, 
FPi = -ikuOwl, 
G(!’ = - iku,r, +O(a5). 

Substituting these relations into (1.7), and using (2.13) and (2.14), we find that 

au, - awl 
aT O az Mlf- = f u0wl - aikw - + aiku - + 0 ( ~ 5 ) .  

Since uo is O(a2), we have now confirmed that Mlf- are O(a3). Putting m = 1 in 
(2.3), it follows that the equation for w, is 

(3.7) 
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Now uo is given by (2.28) and (2.33), and, at least to within an error O(a5), uo is 
a function of (2, T )  only and is independent of z .  The appropriate solution for w1 
is thus [cf. (2.7)] 

w1 = aA*(T, 2) exp {ik,z} +O(a5), (3.8) 

where 

and 

L* a -, ik, ik, +a ( :T az A* = Blf +O(a4) 

A au aA* M p  = &u,A*-aik-OA*Taiku -. aT O az 

(3.9) 

(3.10) 

Here i@f is O(a2). The term O(a) in (3.9) is just (2.8), which in turn implies that 
uo is given by (2.39). In  general, the equation (3.9) for A* and the equation (2.28) 
[with (2.33)] for uo are coupled. However, we may use (2.8),  and then (3.9) to 
O(a2),  to approximate successively the higher derivatives of A* with respect to Z 
by derivatives with respect to T. Thus (3.9) may be recast in the form 

aA+ a2A* a3A* 
2aikc-+ 4a2--aikcyA* +aN$ +O(a3), (3.11) 

dA* - =T2-- az aT aT2 - aT3 

where 

From (2.39) and (3.12) we have 

a2Nf = - 2ikci@$ +a ai@$/aZ. 

NF = 8ikC,IA*l2A* +O(a). 

(3.12) 

(3.13) 

Next we may use (3.11) to O(a) in (2.33), and so express PH0 in terms of time 
derivatives. Then (2.28) implies, after some algebraic manipulation, that 

uo =T4a21A*I2+12a3ik (3.14) 

This result may then be substituted into (3.10) and (3.12), and we find that 

Nlf = 8ikclA*12A* & 2 4 ~ ~ ( A * ) ~ a 2 * / a T  +O(a2).  (3.15) 

It is instructive to observe that (3.11) may be rewritten in the operational form 

aaA*/aZ = ( f 2 i o  +2ikcw2f  4iw3-ikCa2y) A* +a2N$ +O(a4), (3.16) 

where w = ia a/aT. (3.17) 

But, if we put w = kc in n* in ( l . l O ) ,  and expand simultaneously about w = 0 
and k = kc [or y = 0, q.v. (1.25)],  we can show that 

f n* = kc- a2ykc f 2w +2kcw2 & 4w3 +O(a4). (3.18) 

Substituting (3.18) into (3.16) we obtain 

w e  have now shown that 
a aA*/aZ = ( f in* - ikc) A* +a2N? +O(a4). (3 .19)  

aw aw, 
- a2 a 2  

Dw - +a - = ( f in*aA* +a3Nlf) exp{ikcz} +O(a5). (3.20) 

Thus the result of totally differentiating w1 with respect to z is the nonlinear 
term Nlf and the term obtained by applying the linear operator f in* to A*; that 
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the linear part should take this form is, of course, apparent from an examination 
of the unmodulated linear solution (1.14). 

We are not in a position to consider the boundary conditions. First, however, 
we extract the Fourier component m = 1 from (1.2), and deduce that 

ikpl = T iku, -a au,/aT +FH1. (3.21) 

If we now substitute for u1 from (2.13) and use w [see (3.17)] to represent the time 
derivative, we can show that 

(3.22) 

Putting m = 1 in the boundary condition (2.5) and using (3.19), it follows that 

(3.23) 

Here A+ etc. are evaluated a t  z = 0 & .  Next, putting m = 1 in the boundary 
condition (2.4), it follows that 

-a(k-w)n+A+ +a(k +w)n-A- 
= -k2Q1-ik[FHl]?-a3i(k-w)N,+ -a3i(k + w ) N y  +O(a5). 

aA+ = a ( & i k - i w ) A - H f .  
Substituting (3.23) into (3.22) then gives 

(3.24) 

c&(w, k )  A = J ,  (3.25) 

9 ( ~ ,  k )  = -i(k-W)2n+-i(k (3.26) 

- (k-w)n+H,+ + ( k  +w)n-Hy +O(a5). (3.27) 

Equation (3.25) is the amplitude equation we are seeking. Here J is a nonlinear 
expression in A ,  while 9 ( w ,  k )  is an ordinary linear differential operator with 
respect to T. If we ignore J ,  then (3.25) is formally equivalent to the dispersion 
relation (1.21) for the unmodulated linear case. From (3.18), we can show that 

9 = - 4 iw(w2  +o(a4). (3.28) 

where 

J = - k 2 & 1 - i k [ F H l ] ? - a 3 i ( k - ~ ) N t - a 3 i ( k  + u ) N i  

Recalling the definition (3.17) of w ,  it follows that 

(3.29) 

Equation (3.29) is the left-hand side of the amplitude equation (3.25), and a note- 
worthy feature is that it is O(a4) and contains a third time derivative. This is 
a consequence of the fact that (1.21) (which is equivalent to formally equating 
9 ( w ,  k )  to zero) has three solutions when k is near kc. As (3.28) shows, one of these 
solutions has w equal to zero and represents an internal gravity wave; the other 
two solutions are related to the instability which arises for k greater than kc. 
Thus the unusual feature of an internal gravity wave co-existing with an in- 
stability is here reflected in the form of (3.29). 

It remains to calculate the nonlinear term J. This is a long and tedious calcula- 
tion and we shall only outline it here. Consider H:; from (1.13) it follows that 
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Here u1 and up are evaluated a t  z = 0 k . Then we use (2 .7) ,  (2 .11) ,  (2 .13) ,  (2 .17) ,  
(2 .24)  and (2 .25)  to express (3 .30)  in terms of A(T)  alone. The result is 

7ikc aA aB 
4 8T aT H: = +-a31AI2A+a4( F3ik,-&)lA[2-++a4A2-+O(a5).  (3 .31)  

This confirms that HF is O(a3), a result which we anticipated earlier. From (1.12),  
Q1 is given by 

Q1 = - c1[Dp2]t - Q[DFJ?- 45j?[D2P1]f - [D2p1]? + O(a5). (3 .32)  

From (3 .22) ,  p1 may be expressed in terms of wl. Further, algebraic manipula- 
tion, using (2 .7 ) ,  (2 .11) ,  (2 .17) ,  (2.24) and (2 .25) ,  shows that 

Q~ = - S ~ ~ I A I ~ ~ A / ~ T  + 0 ( ~ 5 ) .  (3 .33)  

Similarly, from (3 .2)  and (3 .5 )  it may be shown that 

aA a2 
aT 8T (3.34) ilC,[F',]? = 6a4 / .4 [2 -  +5a4A2 - +O(a5). 

Also, using (2.11), we can show that, at  2 = 0 &, 

N: = T 2 [ A I 2 A  +&ik +A2-  +0(a2). (3.35) ( :: 2) 
We now substitute (3 .31)  and (3.33)-(3.35) into (3 .27) .  Recalling that w is 
ia a/aT [see (3 .17) ] ,  we find that 

(3 .36)  

We have thus established that J is O(a4), and since a9A in (3 .29)  is also O(a4), 
our choice of aT [see (1 .26) ]  as the slow time variable has been justified. 

8A aA 
aT aT J = 1 S ~ ~ l A l ~ -  +8a4A2- + O ( d ) .  

4. Discussion of the amplitude equation 

J given by (3 .36) .  Hence the amplitude equation is 
The amplitude equation is (3 .25)  with 9given by (3 .29)  and the nonlinear term 

a3.4 aA A 2-+2A2- aA aA 
aT aT 

-- aT3+YS = - I  I 
As the right-hand side of this equation is not integrable, we have not been able 
to obtain its general solution in an explicit form. However, by inspection we see 
that (4.1) has the particular solution 

A = A,, (4 .2 )  

where A ,  is an arbitrary (complex) constant. The particular solution (4 .2 )  may 
be interpreted as a finite amplitude internal gravity wave, which is stationary 
with respect to the interface. 

The stability of this solution may be determined by putting 

A = Ao(1 +B) ,  (4 .3 )  
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and substituting this into (4 .1) ,  so that 

1 +BIZ-- aB +2(1  +B)2-  
aT (4.4) 

The equations which determine the stability of A ,  are obtained by linearizing 
this equation with respect to B: 

where B = BR +iBI. (4.7) 

IAOl2 ’ 6Y. (4.8) 

Thus the particular solution (4.2) is stable to small perturbations if 

This condition will always be satisfied if y is negative; this is to be expected as 
then k is less than kc [see (1 .25) ]  and the interface z = 0 is stable according to 
linearized theory. When y is positive the interface z = 0 is unstable according to 
linearized theory. Nevertheless (4.8) shows that the interface can support 
a stable finite amplitude internal gravity wave; the amplitude of this wave, 
aIAOI, must satisfy (4 .8 ) ,  or from (1 .25) ,  

jIaA,12 > ( k -  kc)/kc. (4.9) 

Lindzen (1974) discussed four observations of internal gravity waves associated 
with shear zones, for which the present model may be applicable. The same four 
observations are reproduced in table 1, and the observed values of alAol are 
compared with the observed values of ( k  - kc)/kc. Note that the crest-to-trough 
amplitude is 4alA,I. Also it is difficult to determine a precise value of U and N 
from the observations, as the observed shear layers are seldom simple discon- 
tinuities; consequently the values of U and N quoted should be regarded as no 
more than representative. In  the first two cases, k is less than kc and so (4.9) is 
trivially satisfied; in the remaining two cases k is greater than kc and (4.9) is again 
satisfied. However, other observations, not reproduced here, show that much 
shorter wavelengths are also observed and then (4.9) is not satisfied; presumably 
these other observations are cases for which the length scale associated with the 
width of the shear zone (ignored in the present model) is more important than 
the length scale UN-I. The equation of the interface associated with the particular 
solution (4 .2)  may be determined from (2 .10)  and (2 .24) ,  and is given by 

y = 2alAol cos (kx  +#,) - 2a2(A,I2sin (2kx +2#,) +O(a3),  (4.10) 

where q5, = argA,. 

Figure 2 shows the graph of 6 compared with the sinusoidal graph obtained from 
linear theory. The graph shows that the effect of thenonlinear terms is to increase 
the slope on one face of the wave and to decrease it on the other face. This is 
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FIGURE 2.  The graph of 6 determined by (4.10) when aIA,,I is 0.2 (solid line): 

the corresponding sinusoidal graph is shown dashed. 
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FIGURE 3. The computed evolution of B with time T*.  The graphs displayed are 
for IAOl2/y = 0-2 and for the following initial conditions at T* = 0: B = O.O1(1+2i), 
aB/aT* = 0.0055, a2B/aT*a = 0.01( -0.3+i) .  
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a characteristic feature of many observations of internal gravity waves (q.v. 
review by Ottersten et al. 1973). 

When y is positive, we put 

in (4.4)) which then becomes 
T* = ydT (4.11) 

This equation was integrated numerically with initial conditions such that 

(4.13) 

These initial conditions represent a small perturbation of the solution (4.2). 
When the stability criterion (4.8) is satisfied, the solution for B is a small ampli- 
tude oscillation, and is well described by (4.5) and (4.6). However, when (4.8) is 
not satisfied, the solution for B soon evolves into a large amplitude, irregular 
oscillation. These oscillations depend on the parameter I Ao12/y, and also show 
some sensitivity to the initial conditions. A typical oscillation is shown in figure 3. 
It is a natural conjecture that the solutions are oscillating about a constant 
equilibrium B,, where B, is stable and so satisfies the condition 

pop 11 +B,p > Qy.  (4.14) 

In  order to test this conjecture, a damping term 

- K a2B/aT *2 (4.15) 

was inserted into the left-hand side of (4.12), where K, the damping coefficient, 
is small and positive. The numerical solutions then converged to  a value B,, which 
was observed to satisfy (4.14). The results are displayed in table 2. The constant 
B, was found to depend solely on IA,I2/y, and was independent both of the damp- 
ing coefficient (always less than 0.1) and of the initial conditions (4.13). We have 
been unable to determine any analytic relation between B, and /Ao12/y, although 
the computed values have the intriguing feature that arg (1 +B,) is approxi- 
mately &r in every case. It is also apparent from table 2 that  B, is such that 
(4.14) is only narrowly satisfied. 

Finally, we exhibit some other particular solutions of (4. l), or equivalently 
(4.4). First, it may easily be verified that (4.1) has a periodic solution 

A = A,exp (ipT), (4.16) 

where p2 +y = $1A012. 

Herep must be real, and so the amplitude A ,  must satisfy (4.8). It can be shown 
that this periodic solution is stable to small perturbations. However, none of the 
computed solutions showed any tendency to  converge to (4.16). Second, if the 
initial conditions are such that BI, the imaginary part of B, is always zero, then 
(4.4) may be integrated. Note, however, from (4.5) and (4.6)) that in the unstable 
case perturbations in B, grow more rapidly than perturbations in BE, the real 
part of B; indeed, it is the perturbations in BI which determine the stability 

6 F L M  76 
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lAo12/Y Bl :I Aol 2 1  1 + BII "Y 
0.36 - 1.80 + i0.70 1.02 
0.32 - 1*90+i0*73 1.07 
0.28 - 1.99 + i0.78 1.11 
0.24 - 2.12 + i0.88 1.22 
0.20 - 2.26 + i0.98 1.27 
0.16 - 2.46 + i l .04 1.29 
0.13 - 2.62 + i l * 1 6  1.29 
0.10 -2*77+il*37 1.25 
0.07 - 2.98 +i l .70  1.19 
0.04 - 3.50 + i2.30 1.15 

TABLE 2. The computed equilibrium values B,. The damping coefficient I( was set 
at 0.05 for the &st five cases, and at 0.075 for the last five cases 

criterion. Nevertheless it is of some interest to examine the solution when B, is 
identically zero. Then (4.4) becomes 

This equation may be integrated once, and hence 

(4.17) 

(4.15) 

Here we have put the constant of integration equal to zero; it can be shown that 
this may always be achieved by translating the origin for BR and adjusting the 
value of IAol. Equation (4.18) can be analysed by standard phase-plane tech- 
niques. The equliibrium points are 

6Y t 
B, = 0, BE = B& = -+* (-2-$-) 

131A01 

if P o l 2  < A Y ,  (4.19) 

and just B, = 0 if < 5 7 ,  the equilibrium 
point B, = 0 is unstable, while B$ are both stable; small perturbations in B, 
evolve into large amplitude oscillations about B$. If I A,I2 > &y, the equilibrium 
point B, = 0 is stable, while BA is unstable and Bg is stable; small perturbations 
in B, evolve into small amplitude oscillations about zero. 

is greater than A?. If 

This research was aided by an N.E.R.C. grant, and was begun while the author 
was on leave at the Department of Mathematics, University College London. 
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